J. Jpn. Soc. Colour Mater., 87 [8], 267–271 (2014)

Preparation and Photocatalytic Activity of [PW₁₂O₄₀]³⁻-Grafted Anatase Powder from Selective Leaching of BaTiO₃

Toshinao Tatsuno*, Kunchaya Pruethiarenun*, Toshihiro Isobe*, Sachiko Matsushita* and Akira Nakaлма*,†

*Department of Metallurgy and Ceramic Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan † Corresponding Author, E-mail: anakajim@ceram.titech.ac.jp

(Received May 29, 2014; Accepted July 22, 2014)

Abstract

Titanium oxide (anatase) particles were prepared using selective Ba leaching from BaTiO₃. The anatase powder was flaky. Its photocatalytic activity for the decomposition of gaseous 2-propanol (IPA) was improved by grafting tungsten-based Keggin-type heteropolyacids (PW_{12} : ($[PW_{12}O_{40}]^3$). PW_{12} -grafted anatase powder immobilized onto Pyrex glass plates with amorphous TiO₂ exhibited better retention of the UV induced hydrophilicity than the pure anatase. Results suggest that the electron scavenger property of PW_{12} plays an important role in the overall photocatalytic performance of the material.

Key-words: BaTiO₃, Anatase, Photocatalyst, Hydrophilic

1. Introduction

Titanium oxide (TiO_2) is a well-known semiconductor photocatalyst^{1,2)}. Electron and hole pairs are generated when TiO₂ is illuminated by UV. The electron and hole pairs respectively reduce and oxidize adsorbates on the surface, thereby producing radical species such as OH radicals and H₂O₂, which can decompose most organic compounds. Various studies have examined the application of TiO₂ for water and air purification³⁻⁸⁾. Together with the photocatalytic decomposition activity, a highly hydrophilic state is obtainable on a TiO₂ surface under UV illumination. This phenomenon is designated as *photoinduced hydrophilicity*⁹⁻¹¹⁾.

In electronic devices such as multilayered ceramic condensers, BaTiO₃ is widely used as a Pb-free ferroelectric material¹²). Because of its toxicity, Ba concentrations in water and soil are carefully monitored and restricted. Usually, BaTiO₃ waste is solidified for disposal by mixture with concrete or glass. As a candidate of the recycle process for BaTiO₃, Kikuta *et al.*¹³) reported the processing of TiO₂ powder by acid leaching of BaTiO₃ in 2006. Subsequently, we prepared rod-like rutile^{14,15}) and flake-like anatase¹⁵) from the same BaTiO₃ by varying the processing conditions.

Very recently, Pruethiarenun *et al.* hybridized tungstenbased Keggin-type heteropolyacid (PW_{12} : $[PW_{12}O_{40}]^{3-}$) with brookite-type TiO₂. Their results revealed that the material exhibited higher photocatalytic decomposition activity and that it had higher photoinduced hydrophilicization rates than pure brookite under UV illumination^{16,17}). These results were inferred to have derived from electron scavenging of PW₁₂ and the resultant Z-scheme photocatalytic systems in the material^{18,19)}. However, their material provided better retention of hydrophilicity in the dark than pure brookite did. They attributed this property to the slow reoxidation efficiency of $PW_{12}^{-17)}$. Although the improvement of photocatalytic decomposition activity of TiO₂ by PW_{12} grafting was confirmed also in the PW_{12} /anatase system²⁰⁻²²⁾, the wettability conversion behavior has not been confirmed on the system. Based on this background, we prepared single-phase flaky anatase from acid treatment of BaTiO₃ powder. Then photocatalytic decomposition activity under UV illumination and the wettability conversion before and after UV illumination were evaluated for the sample with and without PW_{12} grafting.

2. Experimental

2.1 Sample preparation

A commercial BaTiO₃ powder (details of characteristics were presented in a previous report¹⁴⁾, 2.0 g, BT-01; Sakai Chemical Industry Co. Ltd., Japan) was mixed with a 5M HNO₃ solution (100 mL) by stirring at room temperature. Then the suspension was heated to 72°C. The temperature was maintained for 4 min. The suspension was filtrated and cooled to about 50°C; its pH value was adjusted to 3 using a 25 mass % NH₄OH solution. The obtained suspension was heated to 90°C again and aged at that temperature for 1 hr. Subsequently, the suspension was centrifuged and sedimentation was washed in distilled water by sonication for 5 min. This washing procedure was repeated twice. Then the powder was dried using a freeze-dryer (DC400; Yamato Scientific Co. Ltd., Japan). Anatase powder was obtained when the dried powder was