色材に関するレギュレーション講座(第2講)

J. Jpn. Soc. Colour Mater., 89 [11], 403-408 (2016)

ナノマテリアル

岸本充生*,†

*東京大学公共政策大学院 東京都文京区本郷7-3-1 (〒113-0033) † Corresponding Author, E-mail: kishimoto@pp.u-tokyo.ac.jp

(2016年8月23日受付, 2016年9月25日受理)

ナノマテリアルの安全性の問題が指摘されて以来10年以上経過したが、ナノマテリアルに適した規制枠組みはまだ模索中である。 欧州では規制上の定義を定めて、該当する場合には、ナノ表示やリスク評価を求める傾向がある。米国では外形的な定義を定めずに、 サイズに起因した機能性の有無で判断し、既存の法規制枠組みをケースバイケースで適用する傾向がある。日本では国内の法規制対 応の動きは鈍いものの、国際的なコンセンサスの形成に注力している。本稿では、ナノマテリアルの法規制を検討するうえでの背景 を第1節に簡潔にまとめたうえで、第2節では国内、第3節では米国、第4節では欧州における法規制動向をまとめた。

キーワード:ナノマテリアル, 法規制, リスク評価, 許容曝露濃度

1. 緒

1.1 ナノマテリアルとは

ナノ (nano) は10のマイナス9乗をあらわし、ナノマテリア ルは国際標準化機関(ISO)により、三つの次元のうちの少な くとも一つが1~100ナノメートルの範囲であることと定義さ れている。2000年に米国で当時のクリントン大統領が、20年 後の大目標としてグランドチャレンジと称する「米国ナノテク ノロジー・イニシアティブ構想」を発表したことが一つのきっ かけとして、ナノテクノロジーブームが起きた。チャレンジの 中には「鉄の10倍の強度と1/10の軽さを備えた新素材」など も含まれていた。ナノスケールに加工することで、新たな機能 を発現することが期待されている。しかし、実際はナノスケー ルの粒子は、環境中にはどこにでも存在する。それらの多くは 自然起源であるが、一部は燃焼などのプロセスによって二次生 成したものである。そこに近年、新たな機能の発現を狙って、 意図的にナノスケールの材料を製造する、あるいはナノスケー ルに加工する技術が開発され、それらの製造や製品化を通し て、ナノスケールの物質が環境中に放出される可能性がある。 サイズが小さくなることにより、ヒトが体内に取り込んだ場合 に、通常の化学物質に比べてその有害性が増す可能性が指摘さ れている。たとえば、体内の想定されない部位に移行したり、 比表面積が大きくなることで反応性が増したりする可能性があ る。しかし、ナノマテリアルに特化した法規制を導入する際に

[氏名] きしもと あつお

東京大学公共政策大学院 特任教授 [趣味]

音楽鑑賞

[経歴]

京都大学大学院経済学研究科博士後期課程 修了後 诵産省工業技術院資源環境技術総 合研究所安全工学部研究員, 独産業技術総 合研究所化学物質リスク管理研究センタ 主任研究員, 独産業技術総合研究所安全科 学研究部門研究グループ長を経て 東京大学公共政策大学院と政策ビジョン研 究センターの特任教授。

は、ナノマテリアルは通常、粒形分布をもつことから、分布の うちのどれくらいの割合が上記の範囲に入っていれば「ナノマ テリアル」とみなすかを定める必要が出てくる。また、ナノマ テリアルは容易に凝集するために, 一次粒子と二次粒子を区別 して検討する必要がある。意図的にナノスケールに加工された ものの中にも、ナノスケールでの計測方法が開発される以前か らナノスケールであることを知らずに利用されてきたものも存 在する。

1.2 化学物質に対する規制体系

ナノスケールの化学物質には当然、現行の化学物質に対する 規制体系が適用される。法規制は、入口規制と出口規制に分か れる。前者については、国内では工業用途なら化審法、すなわ ち化学物質の審査および製造等の規制に関する法律や、労働安 全衛生法が該当する。新規化学物質の使用開始時に、物理化学 的特性データと定められた安全性試験データを揃えて提出する ことが義務付けられている。農薬として使用するなら農薬取締 法, 医薬品, 医薬部外品, あるいは化粧品ならば薬機法, すな わち医薬品、医療機器等の品質、有効性および安全性の確保等 に関する法律が該当する。後者については、大気汚染防止法や 水質汚濁防止などが該当する。ヒトへの健康影響は、急性と慢 性に分けることができる。急性影響は、事故などにより、短期 間に高濃度の曝露を受けることにより健康影響がすぐさまあら われる場合を、慢性影響は低濃度であるが長期間にわたって曝 露することによって時間をおいて影響があらわれる場合を指 す。本稿ではおもに後者を扱う。

多くの化学物質規制は近年、リスクベース、すなわちリスク 評価の結果に基づいてリスク管理される体系になっている。化 学物質の慢性曝露によるリスクは, 有害性の大きさ (ハザー ド)と曝露量(摂取量)の二つの要素からなる。ナノスケール になることで有害性の大きさが増す可能性が最も懸念されてい るが、曝露形態に変化が生じる可能性もある。曝露経路は、吸